Java多线程入门

Java多线程入门

1.创建新线程

Java用Thread对象表示一个线程,通过调用start()启动一个新线程;

一个线程对象只能调用一次start()方法;

线程的执行代码写在run()方法中;

线程调度由操作系统决定,程序本身无法决定调度顺序;

Thread.sleep()可以把当前线程暂停一段时间。

2.线程的状态

Java线程对象Thread的状态包括:NewRunnableBlockedWaitingTimed WaitingTerminated

通过对另一个线程对象调用join()方法可以等待其执行结束;

可以指定等待时间,超过等待时间线程仍然没有结束就不再等待;

对已经运行结束的线程调用join()方法会立刻返回。

3.中断线程

对目标线程调用interrupt()方法可以请求中断一个线程,目标线程通过检测isInterrupted()标志获取自身是否已中断。如果目标线程处于等待状态,该线程会捕获到InterruptedException

目标线程检测到isInterrupted()true或者捕获了InterruptedException都应该立刻结束自身线程;

通过标志位判断需要正确使用volatile关键字;

volatile关键字解决了共享变量在线程间的可见性问题。

4.守护线程

守护线程是为其他线程服务的线程;

所有非守护线程都执行完毕后,虚拟机退出;

守护线程不能持有需要关闭的资源(如打开文件等)。

5.同步线程

多线程同时读写共享变量时,会造成逻辑错误,因此需要通过synchronized同步;

同步的本质就是给指定对象加锁,加锁后才能继续执行后续代码;

注意加锁对象必须是同一个实例;

对JVM定义的单个原子操作不需要同步。

6.同步方法

没有特殊说明时,一个类默认是非线程安全的。

synchronized修饰方法可以把整个方法变为同步代码块,synchronized方法加锁对象是this

通过合理的设计和数据封装可以让一个类变为“线程安全”;

一个类没有特殊说明,默认不是thread-safe;

多线程能否安全访问某个非线程安全的实例,需要具体问题具体分析。

7.死锁

Java的synchronized锁是可重入锁;

死锁产生的条件是多线程各自持有不同的锁,并互相试图获取对方已持有的锁,导致无限等待;

避免死锁的方法是多线程获取锁的顺序要一致。

8.使用wait或者notify

waitnotify用于多线程协调运行:

  • synchronized内部可以调用wait()使线程进入等待状态;
  • 必须在已获得的锁对象上调用wait()方法;
  • synchronized内部可以调用notify()notifyAll()唤醒其他等待线程;
  • 必须在已获得的锁对象上调用notify()notifyAll()方法;
  • 已唤醒的线程还需要重新获得锁后才能继续执行。

9.使用ReentrantLock

ReentrantLock可以替代synchronized进行同步;

ReentrantLock获取锁更安全;

必须先获取到锁,再进入try {...}代码块,最后使用finally保证释放锁;

可以使用tryLock()尝试获取锁。

10.使用Condition

使用Condition时,引用的Condition对象必须从Lock实例的newCondition()返回,这样才能获得一个绑定了Lock实例的Condition实例。

Condition提供的await()signal()signalAll()原理和synchronized锁对象的wait()notify()notifyAll()是一致的,并且其行为也是一样的:

  • await()会释放当前锁,进入等待状态;
  • signal()会唤醒某个等待线程;
  • signalAll()会唤醒所有等待线程;
  • 唤醒线程从await()返回后需要重新获得锁。

此外,和tryLock()类似,await()可以在等待指定时间后,如果还没有被其他线程通过signal()signalAll()唤醒,可以自己醒来:

1
2
3
4
5
if (condition.await(1, TimeUnit.SECOND)) {
// 被其他线程唤醒
} else {
// 指定时间内没有被其他线程唤醒
}

可见,使用Condition配合Lock,我们可以实现更灵活的线程同步。

Condition可以替代waitnotify

Condition对象必须从Lock对象获取。

11.使用ReadWriteLock

允许 不允许
不允许 不允许

使用ReadWriteLock可以提高读取效率:

  • ReadWriteLock只允许一个线程写入;
  • ReadWriteLock允许多个线程在没有写入时同时读取;
  • ReadWriteLock适合读多写少的场景。

12.使用StampedLock

StampedLockReadWriteLock相比,改进之处在于:读的过程中也允许获取写锁后写入!这样一来,我们读的数据就可能不一致,所以,需要一点额外的代码来判断读的过程中是否有写入,这种读锁是一种乐观锁。

乐观锁的意思就是乐观地估计读的过程中大概率不会有写入,因此被称为乐观锁。反过来,悲观锁则是读的过程中拒绝有写入,也就是写入必须等待。显然乐观锁的并发效率更高,但一旦有小概率的写入导致读取的数据不一致,需要能检测出来,再读一遍就行。

StampedLock提供了乐观读锁,可取代ReadWriteLock以进一步提升并发性能;

StampedLock是不可重入锁。

13.使用Concurrent集合

interface non-thread-safe thread-safe
List ArrayList CopyOnWriteArrayList
Map HashMap ConcurrentHashMap
Set HashSet / TreeSet CopyOnWriteArraySet
Queue ArrayDeque / LinkedList ArrayBlockingQueue / LinkedBlockingQueue
Deque ArrayDeque / LinkedList LinkedBlockingDeque

14.使用线程池

JDK提供了ExecutorService实现了线程池功能:

线程池内部维护一组线程,可以高效执行大量小任务;

Executors提供了静态方法创建不同类型的ExecutorService;

必须调用shutdown()关闭ExecutorService;

ScheduledThreadPool可以定期调度多个任务。

创建一个ScheduledThreadPool仍然是通过Executors类:

1
ScheduledExecutorService ses = Executors.newScheduledThreadPool(4);

我们可以提交一次性任务,它会在指定延迟后只执行一次:

1
2
// 1秒后执行一次性任务:
ses.schedule(new Task("one-time"), 1, TimeUnit.SECONDS);

如果任务以固定的每3秒执行,我们可以这样写:

1
2
// 2秒后开始执行定时任务,每3秒执行:
ses.scheduleAtFixedRate(new Task("fixed-rate"), 2, 3, TimeUnit.SECONDS);

如果任务以固定的3秒为间隔执行,我们可以这样写:

1
2
// 2秒后开始执行定时任务,以3秒为间隔执行:
ses.scheduleWithFixedDelay(new Task("fixed-delay"), 2, 3, TimeUnit.SECONDS);

15.使用Future

1
2
3
4
5
6
7
ExecutorService executor = Executors.newFixedThreadPool(4); 
// 定义任务:
Callable<String> task = new Task();
// 提交任务并获得Future:
Future<String> future = executor.submit(task);
// 从Future获取异步执行返回的结果:
String result = future.get(); // 可能阻塞

Callable接口是一个泛型接口,可以返回指定类型的结果。

16.使用CompletableFuture

CompletableFuture的优点是:

异步任务结束时,会自动回调某个对象的方法;
异步任务出错时,会自动回调某个对象的方法;
主线程设置好回调后,不再关心异步任务的执行。

CompletableFuture可以指定异步处理流程:

  • thenAccept()处理正常结果;
  • exceptional()处理异常结果;
  • thenApplyAsync()用于串行化另一个CompletableFuture
  • anyOf()allOf()用于并行化多个CompletableFuture

17.使用ThreadLocal

ThreadLocal表示线程的“局部变量”,它确保每个线程的ThreadLocal变量都是各自独立的;

ThreadLocal适合在一个线程的处理流程中保持上下文(避免了同一参数在所有方法中传递);

使用ThreadLocal要用try … finally结构,并在finally中清除。

  • 版权声明: 本博客所有文章除特别声明外,著作权归作者所有。转载请注明出处!
  • Copyrights © 2020-2021 Joe
  • 访问人数: | 浏览次数:

请我喝杯咖啡吧~

支付宝
微信